

TEACHER FACEBOOK

Doree Tschudy Teacher Ohlone Elementary Palo Alto, CA

Zach KongHong Ong Principal Teck Whye Secondary School Singapore

Caitlin Sweeney First Grade Teacher Springside School Philadelphia, PA

Mrs Shirley Teo, Head of Department (English) Teck Whye Secondary School Singapore

Hank Gallina District Leadership Team Lompoc Unified School District

Judy Callas Middle School Art Springside School Philadelphia, PA

Alwin Njoo Head of Department (Science) Teck Whye Secondary School Singapore

Christian Reilly Science Teacher Santa Catalina High School Monterrey, CA

Bronia Whipp Middle School Teacher Burlingame Inter. Burlingame, CA

Gina Rocca Dalton Kindergarten New York City, New York

Rober Pronovost 2nd Grade Teacher Belle Haven Elementary East Menlo Park

Katie Uppman Teacher (Grades 3-5) Katherine Michiels School San Francisco, CA

Fred White English and Art Dept-Santa Catalina School Monterrey, CA

Cindy Duim Math Teacher Somona Academy Santa Rosa, CA

David Bill Administrator New Tech Network Napa, CA

Sue Penchina Author Los Altos Hills, CA

Jared Vanscoder **Engineering Teacher** Irving High School Irving Texas

Irina Zadov Director of Experience and Programs Zeum San Francisco, CA

TEACHER FACEBOOK

Carrie Diel Art Teacher Colorado Academy Denver, CO

Ryan Silva Administration Toronto, Canada

Kevin Kirchner Math and Science Teacher Pacifica Christian High Santa Monica, CA

Susan Kendall Teacher Santa Catalina School Monterey, CA

Warren Yu Chief Learning Officer Cebrowski Institute Monterey, CA

Mohan Nadarajah CEO Play Lab Inc. Toronto, Canada

Katheryn McDonald Park English Teacher Cate School Carpinteria, CA

Amanda Frey Enrichment Teacher South School Hillsborough, CA

Harvey Scribner High School Teacher University City HS Philadelphia, PA

Isabel Ochoa Spanish Teacher Philips Brooks School Menlo Park, CA

Pamela Meuser

West Hillsborough

Grades 3-5

elemenatary

Milbrae, CA

Allison McFall

Springside School

Middle School Teacher

Deborah Tan Head of Dept for Pupil Development Teck Whye School Singapore

Sean Jalleh Design and Technology Teck Whye School Singapore

Dana Hart-Stone Visual Arts Chair Santa Catalina School Monterey, CA

Ellen Kruger Physics Teacher Springside School Philadelphia, PA

Diana Sanchez Teacher High Tech High San Diego, CA

Donna Emerson 3rd Grade Marshall Lane Saratoga, CA

Group Emails:

Alison McFall ALWIN NJOO KIAT GUAN Amanda Frey Bronia Whipp Caitlin Sweeney carrie diehl Christian Reilly **Cindy Duim** Dana Hart-Stone David Bill Deborah Tan Diana Sanchez Donna Emerson Doree Tschudy Ellen Kruger Fred White gina hanono Harvey Scribner Henry "Hank" Gallina Irina Zadov Isabel Ochoa Jared Vanscoder Jenny Maehara Judy Callas Katheryn McDonald Park Katie Uppman Kevin Kirchner Mohan Nadarajah Mrs Shirley Teo Pamela Meuser **Robert Pronovost** Ryan Silva Sean Jalleh Sue Penchina Susan Kendall Warren Yu Zach KongHong Ong

amcfall@springside.org njoo_kiat_guan_alwin@moe.edu.sg afrey@hcsd.k12.ca.us bwhipp@bsd.k12.ca.us csweeney@springside.org carriediehl@hotmail.com christian reilly@santacatalina.org caduim@sbcglobal.net Dana_Hart-Stone@sbcglobal.net david.bill.iv@gmail.com tan hui min deborah@moe.edu.sg dsanchez@hightechhigh.org donnaemerson2010@comcast.net doree.day@gmail.com ekruger@springside.org Fred_White@santacatalina.org gina.hanono@gmail.com hscribner@philasd.org hgallina@aol.com izadov@zeum.org issavel8a@gmail.com jared@jaredvanscoder.com jmaehara@gmail.com jcallas@springside.org katheryn Park@cate.org Katie@Uppman.com kkirchner@pacificachristian.org mohan.nadarajah@google.com steo.twss@teckwhyesec.org pmeuser@hcsd.k12.ca.us robert.pronovost@gmail.com ryansilva79@yahoo.ca sean.jalleh@gmail.com spenchina@yahoo.com susan_kendall@santacatalina.org wyu@nps.edu ong_kong_hong@moe.edu.sg

DESIGN THINKING TEACHING GUIDE

Ideas and Strategies for Implementing Design Thinking in Schools

CREATING A DESIGN CHALLENGE

(IN 5 MINUTES BY USING THE DESIGN PROCESS)

The framing of a Design Challenge sets the stage for student teams to explore characters and problems within a situation. The best framing does not constrain them to one problem to solve nor leave it too broad that they have trouble finding tangible problems.

Settings

Step 1

Plan Empathy ->

List Settings that are both interesting to your students and have the potential to embed curricular content. Each setting should have between 3 and 6 potential Characters and at least 4 Potential Problems. It is common during the course of the Design Challenge for students to discover unanticipated problems.

Step 2 Develop Define/Ideate ->

Chose a setting and write 3 versions of a statement that captures the situation. Use the scaffolds to the right to help. If you get stuck, try a new setting.

Step 3 Prototype and Test ->

Pick one of the statements you generated and test it to make sure that it is properly scoped for a rich design challenge. The questions on the right are helpful in testing that a challenge is properly scoped.

Characters

Ex. A local park Kids who play there Parents Animals

Potential Problems Litter

Habitat disruption Park financial viability

Redesign the (situation) experience. Design a way for ____(specific group of people)____ to better ___(situation)____. How might we help ____(achieve some goal)____? Ex. How might we keep the park clean? Design a way for people at the park to better support native animal life.

By working with the statement above will students have the opportunity to address multiple characters, problems and character needs? If not, make the statement more broad.

By working with the above statement will students be able to find similarities between characters, problems, and needs? If not, make the statement more narrow.

When you feel you have a Design Challenge, write it down and begin.

Meta Moments

*Having students brainstorm before empathy is a great way to illustrate the value of the empathy stage. *Students find real people facing real

problems compelling.

*Students may need to be coached on staying objective and refraining from jumping to solutions too early in the process.

* Empathy experiences such as interviews and other open-ended approaches lead to unexpected outcomes and discovery of unique problems.

Make Sure...

Before – to provide a range of empathy experiences (varying perspectives as well as activities allow for stories, feelings, problems etc...)

During – Students use follow-up questions. Students diligently record (notes, video etc) peoples' responses. After – Students have collected diverse empathy artifacts (stories, pictures etc...)

Prompts

Who should we talk to? Who can we learn from? What is the experience of

our user?

LE\ 1. O 2. \

> LE 1. H 2. V 3. D

English: Write a paper that will be interesting to a particular target group (complete empathy build to understand that group

EMPATHY

Description of Phase

Design thinking is a user-centered design process, and the empathy that comes from observing users enables design thinkers to uncover deep and meaningful needs (both overt & latent). Empathy, by definition, is the intellectual identification with or vicarious experiencing of the feelings, thoughts or attitudes of another. Three main techniques are used to gain empathy: interviewing, observation, immersion. The goal of the empathy mode is to discover gaps in between what people do and what people say they do. These gaps are the design opportunities.

Student Outcomes

- The value of building empathy to discover deeper needs

- Skills needed to understand user

Strategies

/EL 1 pen-ended Questions ideo observation	LEVEL 2 1. Interview Techniques 2. Obs. vs interpretation 3. Field notes
′EL 3	LEVEL 4
ow/Why Laddering	1. Powers of 10
/alk in the Moccasins	2. Community map
ay in the life	3. Surveys

Suggested connections to academic content

History: Research techniques - approach a research paper like an empathy experience

Science: Observation and the scientific method

DEFINE

Description of Phase

The Define mode is seen as a 'narrowing' part of the process. After collecting volumes of user information, it is time to distill down to one specific user group, their need and the insight behind that need so as to unify and inspire a team. The goal of this mode is to come up with at least one actionable problem statement (often referred to as Point of View (POV)) that focuses on the insights that you uncovered from real users.

Student Outcomes

The process of determining a unique human centered problem from a large, unorganized set of information.

Strategies	
LEVEL 1 1. Madlibs	LEVEL 2 1. Empathy Map 2. Other mapping techniques
LEVEL 3 1. Want Ad 2. 2X2s	LEVEL 4 1. Metaphor

Suggested connections to academic content

English: Developing a metaphor or want ad to describe project problem statement.

History: connect to the concept of a thesis statement for a term paper

English: Character description

Meta Moments

* Defining a problem statement is one of the most challenging steps in the design process. Giving stuents more structure (see strategies) can be very helpful

* Be sure to allow pleanty of time for this stage. It will set students up for the rest of the design challenge.

* The more rich the information, the more options students have when narrowing to a specific problem. * There is no right way to do it, but multiple approaces and some time lead to rich insights. It's more of an art -decision making and inference.

Make Sure...

Before: Students have a range of information including: quotes, pictures/ drawings, descriptions of users' feelings. Students have a space to share findings i.e. whiteboard, table top, floor **During:** Students should seek patterns in the information, form user profiles, detect implicit and explicit needs, capture surprising behaviors and feelings

After: Capture a unique user, need, and insight from all the data that describe a certain problem that a person or group is facing. Take that description and generate "how might we" statements that each deal with an aspect of your description.

Prompts

- What type of information do we have?
- What patterns are there?
- What needs and insights can we find?

Meta Moments

* Space matters - playing fun music, setting up a space that allows for students to stand or move around as they are generating ideas adds to this experience.

* Scope and definition of brainstorming prompts will influence how long the brainstorm has steam.

* One brainstorming skill is knowing when to navigate to the next brainstorming prompt (when energy has

died on a given topic).

* Think about selecting a facilitator for each group who will enforce the rules and maintain a positive brainstorming atmosphere.

* This is about no owning ideas but encouraging teammates to generate.

Make Sure...

Before: Students have a defined problem: user, need and insight. They have multiple brainstorming prompts "how might we's" to brainstorm off of. You might want to combine groups to have 6-8 students brainstorming in a group. **During:** Students have high energy, are following the brainstorming rules (especially being visual and deferring judgment), and are listening to each other and building on each other's ideas. When student group energy gets low, encourage the group to move on to a new prompt or to do a warm-up improv activity to get energy up. After: Students (as a group) have selected around 3 ideas to move forward by voting. See prompts on the prototyping page.

Prompts

What new ideas do we have that will meet the needs of our user?

LE 1. S

LE 1. V 2. E

IDEATE

Description of Phase

Ideation is the process of idea generation. Mentally it represents a process of "going broad" in terms of concepts and outcomes. Ideation provides the fuel for building prototypes and driving innovative solutions.

Student Outcomes

The value and benefit of following the brainstorming rules: being visual, building on other's ideas,

deferring judgment on ideas.

Strategies

VEL 1	LEVEL 2
imple Brainstorming	1. Brainstorming rules
VEL 3 isual Brainstorming Bodystorming	LEVEL 4 1. Brainstorming

Suggested connections to academic content - History: Look at a decision that was made in history and brainstorm different potential solutions - Social Studies: Look at current event, create "how might we's" and brainstorm possible solutions - Science: Brainstorming hypotheses for an experiement - English: Brainstorm characters, problems, etc for creative writing

PROTOTYPE

Description of Phase

Prototyping is the iterative development of artifacts - digital, physical, or experiential - intended to elicit qualitative or quantitative feedback. The act of prototyping implies "building", testing, and iterating and is, itself, both a flaring and a narrowing process. The flaring represents the proliferation of lowresolution prototypes developed as different aspects of the prototype are evaluated. The narrowing represents the refinement of the lower resolution models into increasingly complex and resolved models based on feedback, that leads to an even better understanding of the users needs.

Student Outcomes

-The value of building to think (Bias towards action)

-The importance of rapid prototyping

Strategies

LEVEL 1 1. Paper Prototype	LEVEL 2 1. Physical Prototype 2. looks like/works like
LEVEL 3 1. Role Playing 2. Prototype to decide 3. Identify a variable	LEVEL 4 1. Prototype intangibles

Suggested connections to academic content

- English/History Multiple drafts of papers
- Math Identification of a variable
- Social Studies Prototype to decide, decision making skills
- Art Sketching

Meta Moments

* We give students relatively little time to prototype so that they don't get attached to ideas and are open to feedback and iteration

* Failing early leads to much better final products. This is not obvious to children as traditional education rarely promotes this.

* Building to think get students in the mind set of "doing" rather than thinking.

Make Sure...

Before - Students have a variety of ideas to select from and move forward on.

During-Students have access to prototyping materials. Students build prototypes rapidly so they are easy to change

After – Students have multiple prototypes that they are ready to test and a clear idea of what they are testing, how will they record and incorporate feedback?

Prompts

How to select an idea (voting) (Most feasible, ground breaking, exciting, functional, the darling, long shot and the safe choice)

What variables do you want to better understand?

- What questions to we have about our idea?

How can we make our idea tangible and in a way that gives us the feedback we need?

Meta Moments

*The more authentic the audience for the test phase the better (ie the user group or a good representative), however if you don't have direct access to the user group use class members to fill in. *If you are using class members to give feedback be sure to coach them on effective an ineffective ways to give feedback. Peers are often reticent to give feedback to one another.

*Coach teams on recognizing that feedback will only make their final solution better

* Presentations should be set up to show the idea and tell the story of the prototype.

Make Sure...

Before – Students have multiple prototypes that they are ready to test and a clear idea of what they are testing, how will they record and incorporate feedback.

During– Students take good notes and ask follow up questions on feedback received from user. Students set up testing presentations with lots of room for feedback from users.

After – Students have a number of ideas of how to move forward and create a new prototype.

Prompts

- What variables are you testing and how can you present your prototype to better test those ideas?

How will you record feedback?

Based on the feedback you received what would you do next?

TEST

Description of Phase

The test mode is another iterative mode in which we place our low-resolution artifacts in the appropriate context of the user's life. In regards to a team's solution, we should always prototype as if we know we're right, but test as if we know we're wrong testing is the chance to refine our solutions and make them better.

Student Outcomes

-Show don't tell – the value of having a clear prototype in testing an idea

-How to incorporate feedback and iterate

Strategies

LEVEL 1 1. Basic Presentation **ILEVEL 2** 1. 4 quadrant test

LEVEL 3 1. Testing Scenarios 2. Evolution of a prototype

LEVEL 4 1. Surveys 2. Real-World Testing

Suggested connections to academic content

-History/English: Effective oral presentations

-Science: Designing an experiment to test a hypothesis

-English: Story telling

HMW embody quick turnarounds? HMW get people out of their HMW do more seats (teachers, parents talk less? HMW get people HMW build empathy for administrators, students)? considering others? others daily? HMW encourage iteration of process? HMW help students move HMW encourage student initiative? forward when they feel stuck? HMW be more transparent HMW create a culture of about where we are in interpersonal engagement HMW incorporate empathy process? **Bias Towards Action** at all levels of the school building activities into the (administration, teachers, standard curriculum? students, parents, staff)? Focus on Human Values Applying Design Thinking Mindsets in Your School HMW involve all community This is a tool to help you think about different ways to incorporate design thinking into members in projects? your school or classroom. Some teachers and administrators may be completely new to HMW keep ideas fresh and these concepts and can think of these brainstorming prompts as a platform to launch open to outside input? new processes. Other teachers and administrators may have been using these mindsets for years and can use these prompts as a way to build on existing practices. HMW engage people with ongoing projects and HMW understand personal strengths HMW get more experimentall solicit feedback? and how to leverage our own with curriculum? and the strengths of others? HMW decrease fear of HMW get more experiential failure? with curriculum? HMW encourage HMW encourage the visual thinking? showing of unfinished work for feedback? HMW encourage HMW create a Iteration? "Failure is good" culture? Culture of Prototyping HMW create a culture that encourages HMW encourage use of storytelling? visuals in the curriculum? Show Don't Tell

Radical Collaboration

7 things you can do tomorrow to incorporate design thinking

Brainstorm

Brainstorming is a fast, self-contained way to practice some of the core principles of design thinking. Having students or teachers run 5, 10, or 20 minute brainstorming sessions is a great way to teach the value of being generative. Conveniently, it can be used to help create solutions for virtually any type of problem, making it one of design thinking's most versatile tools.

More Vertical Writing Space

Space is a fantastic way to support and teach design thinking. The d.school is an example of a building dedicated to support our way of working. But most of what our space enables can be recreated cheaply by adding more vertical writing space. Here teachers at East Palo Alto Phoenix Academy gave butcher paper to students who created their own dynamic team studio.

Don't Yuck My Yum

Creating a positive, supportive atmosphere is essential to sustained design thinking. The most common way this is violated is by giving unconstructive feedback. Students at the Aspire School in East Palo Alto while practicing brainstorming came up with the phrase "don't yuck my yum" to remind each other to give only positive feedback. Designing similar reminders forms a safe space for student creativity.

Build to Think

Prototyping is not just a way to test an idea, it is a process that helps people think. Constantly surrounding students and teachers with low resolution materials encourages kinesthetic learning and communication. Objects like scrap paper, pipe cleaner, zip ties, tape, glue, old magazines, etc can be acquired quite cheaply and are amazingly versatile.

Prototype to Decide

The design thinking process often stalls when teams begin to over-discuss their next steps. The adage "prototype to decide" reminds us that instead of arguing about what the next idea when a team hits an impasse, create some quick prototypes and test each idea. Let the users decide what course of action you should take.

Think Visually

Communication is an essential ingredient of design thinking's collaboratory working style. By biasing towards drawing and capturing ideas on Post-Its students and teachers can communicate their thoughts in a more accessible way. Furthermore, visual thinking creates artifacts that are easily accessible and malleable to an entire group.

sharing as art space

Search for Human Needs

At the core of design thinking is solving problems for people. Promoting this human centered approach means framing problems by describing them as human needs. Likewise, the success of ideas depends on how accurately and deeply they address the problems that others face.

An Educator's Guide to Design Thinking

Shaping our Knowlege Among Studgents apid PACULTY

- CON

ROOM HELPS